Search results for " halogen bond"

showing 10 items of 15 documents

Halogen bonding stabilizes a cis-azobenzene derivative in the solid state : A crystallographic study

2017

Crystals oftrans- andcis-isomers of a fluorinated azobenzene derivative have been prepared and characterized by single-crystal X-ray diffraction. The presence of F atoms on the aromatic core of the azobenzene increases the lifetime of the metastablecis-isomer, allowing single crystals of thecis-azobenzene to be grown. Structural analysis on thecis-azobenzene, complemented with density functional theory calculations, highlights the active role of the halogen-bond contact (N...I synthon) in promoting the stabilization of thecis-isomer. The presence of a long aliphatic chain on the azobenzene unit induces a phase segregation that stabilizes the molecular arrangement for both thetrans- andcis-i…

Materials Chemistry2506 Metals and Alloys116 Chemical sciencesCrystal structure010402 general chemistryPhotochemistry01 natural sciencesazobenzene; halogen bonding; isomerization; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics; 2506; Materials Chemistry2506 Metals and Alloysisomerizationchemistry.chemical_compoundPhase (matter)Atomic and Molecular PhysicsMaterials ChemistryElectronicOptical and Magnetic MaterialsHalogen bondta114010405 organic chemistryChemistrySynthonMetals and AlloysAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystallographyazobenzeneAzobenzenehalogen bondingDensity functional theorySettore CHIM/07 - Fondamenti Chimici Delle Tecnologieand Optics2506IsomerizationDerivative (chemistry)
researchProduct

Cocrystal trimorphism as a consequence of the orthogonality of halogen- and hydrogen-bonds synthons.

2019

True trimorphic cocrystals, i.e. multi-component molecular crystals of identical composition that exhibit three polymorphic structures, are exceedingly rare and so far no halogen-bonded cocrystal system has been reported to exhibit trimorphism. Here we describe a unique example of a trimorphic cocrystal exhibiting both hydrogen and halogen bonds in which the differences between polymorphs reveal their orthogonality, evident by the apparently independent variation of well-defined hydrogen- and halogen-bonded motifs. peerReviewed

inorganic chemicalsHydrogenchemistry.chemical_element010402 general chemistry01 natural sciencesCocrystalCatalysiskemialliset sidoksetOrthogonalityTrimorphismMaterials Chemistrysupramolekulaarinen kemiavetysidokset010405 organic chemistryHydrogen bondSynthonMetals and Alloysorthogonality halogen bond hydrogen bond cocrystal trimorphismGeneral Chemistrykiteet0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryHalogenCeramics and CompositesChemical communications (Cambridge, England)
researchProduct

Neutral Organometallic Halogen Bond Acceptors: Halogen Bonding in Complexes of PCPPdX (X = Cl, Br, I) with Iodine (I(2)), 1,4-Diiodotetrafluorobenzen…

2012

The behavior of a sterically crowded neutral pincer {2,6-bis[(di-t-butylphosphino)methyl]-phenyl}palladium (PCPPd) halides, PCPPdX (X = Cl, Br or I), as XB acceptors with strong halogen bond (XB) donors, iodine (I2), 1,4-diiodotetrafluorobenzene (F4DIBz), and 1,4-diiodooctafluorobutane (F8DIBu) were studied in the solid state. The co-crystallization experiments afforded high-quality single crystals of XB complexes PCPPdCl–I2 (1a), PCPPdBr–I2 (2a), PCPPdI–I2(3a), PCPPdCl–F4DIBz (1b), PCPPdBr–F4DIBz (2b), and PCPPdBr–F8DIBu (2c). The 1:1 iodine complexes (1a, 2a, and 3a) all showed a strong halogen bonding interaction, the reduction of the sum of the van der Waals radii of halogen to iodine b…

Halogen bond010405 organic chemistryHydrogen bondChemistrySolid-statePalladium chlorideGeneral ChemistryCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciencesArticle0104 chemical sciences3. Good healthCrystallographyComputational chemistrypalladium; pincer complexes; halides; halogen bondHalogenGeneral Materials ScienceCenter (algebra and category theory)ta116Crystal growthdesign
researchProduct

Surface-relief gratings in halogen-bonded polymer-azobenzene complexes A concentration-dependence study

2017

In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer–azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer–azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation…

Polymers116 Chemical sciencesPharmaceutical Science02 engineering and technologyPhotoresponsiveMicroscopy Atomic Force01 natural sciencesAnalytical Chemistrylaw.inventionchemistry.chemical_compoundHalogenslawDrug DiscoverySupramolecularPolymerchemistry.chemical_classificationHalogen bondMolecular StructureAzobenzenePolymer021001 nanoscience & nanotechnologyAzobenzeneChemistry (miscellaneous)HalogenHalogenMolecular MedicineHalogen bonding0210 nano-technologyMaterials scienceSurface PropertiesChemieSupramolecular chemistry010402 general chemistrySurface-relief gratingArticleAzo Compoundlcsh:QD241-441lcsh:Organic chemistryOptical microscopeMoleculePhysical and Theoretical ChemistryThin filmta114Organic Chemistry0104 chemical sciencesCrystallographychemistrysurface-relief grating; azobenzene; halogen bonding; supramolecular; photoresponsiveSettore CHIM/07 - Fondamenti Chimici Delle TecnologieAzo CompoundsMOLECULES
researchProduct

Halogen-bonded photoresponsive materials

2015

The aim of the present review is to illustrate to the reader the state of the art on the construction of supramolecular azobenzene-containing materials formed by halogen bonding. These materials include several examples of polymeric, liquid crystalline or crystalline species whose performances are either superior to the corresponding performances of their hydrogen-bonded analogues or simply distinctive of the halogen-bonded species. submittedVersion Peer reviewed

chemistry.chemical_classificationHalogen bondAzobenzene; Halogen bonding; Liquid crystals; Photoresponsive materials; PolymersAzobenzeneLiquid crystallinePolymersLiquid crystals116 Chemical sciencesSupramolecular chemistryPolymerchemistry.chemical_compoundchemistryAzobenzeneLiquid crystalPhotoresponsive materialLiquid crystalPolymer chemistryHalogenSettore CHIM/07 - Fondamenti Chimici Delle TecnologieHalogen bondingta116Photoresponsive materials
researchProduct

Halogen Bonded Analogues of Deep Cavity Cavitands

2014

The first examples of halogen bonded analogues of deep cavity cavitands with guest binding properties, formed between N-alkyl ammonium resorcinarene halides as acceptors and bromotrichloromethane as the donor, are reported in the solid state and in solution.

Binding propertiesMetals and AlloysSolid-stateHalideGeneral ChemistryResorcinarenePhotochemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryResorcinarenes; Cavitands; X-ray Crystallography; Halogen BondsHalogenMaterials ChemistryCeramics and CompositesAmmoniumta116
researchProduct

Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions

2016

Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [CnF2 n+1-I⋯I⋯I-CnF2 n+1]- are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. Out of the ordinary: The high directionality of halogen bonds and the fluorophobic effect were exploited in the design and synthesis of a new family of unconventional superfluorinated ionic liquid crystals. The liquid crystallinity of the system is driven by halogen-bonded…

116 Chemical sciencesInorganic chemistry1600Supramolecular chemistryIonic bonding010402 general chemistry01 natural sciencesCatalysissupramolecular chemistryCrystallinitychemistry.chemical_compoundLiquid crystal1503ta116Alkylchemistry.chemical_classificationHalogen bondionic liquid crystal010405 organic chemistryChemistryCommunicationChemistry (all)Self-assemblyGeneral MedicineGeneral Chemistryself-assemblyFluorophobic effect; Halogen bonding; Ionic liquid crystals; Self-assembly; Supramolecular chemistry; Chemistry (all); CatalysisCommunicationsfluorophobic effect0104 chemical sciencesCrystallographyhalogen bondingIonic liquidIonic liquid crystalsSettore CHIM/07 - Fondamenti Chimici Delle TecnologieFluorophobic effectSelf-assemblyHalogen bondingionic liquid crystalsSupramolecular chemistry
researchProduct

Do 2-coordinate iodine(I) and silver(I) complexes form Nucleophilic Iodonium Interactions (NIIs) in solution?

2022

The interaction of a [bis(pyridine)iodine(I)]+ cation with a [bis(pyridine)silver(I)]+ cation, in which an iodonium ion acts as nucleophile by transferring electron density to the silver(I) cation, is reinvestigated herein. No measurable interaction is observed between the cationic species in solution by NMR; DFT reveals that if there is an attractive interaction between this complexes in solution, it is dominantly the π-π interaction of pyridines peerReviewed

jodikemialliset yhdisteethopeaNMR halogen bondkidetiede
researchProduct

Coordination networks incorporating halogen-bond donor sites and azobenzene groups

2016

Two Zn coordination networks, {[Zn(1)(Py)2]2(2-propanol)}n (3) and {[Zn(1)2(Bipy)2](DMF)2}n (4), incorporating halogen-bond (XB) donor sites and azobenzene groups have been synthesized and fully characterized. Obtaining 3 and 4 confirms that it is possible to use a ligand wherein its coordination bond acceptor sites and XB donor sites are on the same molecular scaffold (i.e., an aromatic ring) without interfering with each other. We demonstrate that XBs play a fundamental role in the architectures and properties of the obtained coordination networks. In 3, XBs promote the formation of 2D supramolecular layers, which, by overlapping each other, allow the incorporation of 2-propanol as a gues…

MOF Supramolecular Chemistry Halogen Bonding AzobenzeneStereochemistry116 Chemical sciencesSupramolecular chemistry02 engineering and technology010402 general chemistryRing (chemistry)01 natural sciencesIUPAC RECOMMENDATIONS 2013chemistry.chemical_compoundMETAL-ORGANIC FRAMEWORKSdell'Università e della RicercaCHEMISTRYTO-CRYSTAL ISOMERIZATIONMinistero dell'IstruzioneMoleculeGeneral Materials Scienceta215SUPRAMOLECULAR SYNTHESISHalogen bondMETAL-ORGANIC FRAMEWORKS; IUPAC RECOMMENDATIONS 2013; TO-CRYSTAL ISOMERIZATION; SUPRAMOLECULAR SYNTHESIS; VISIBLE-LIGHT; POLYMERS; FLUOROAZOBENZENES; COCRYSTALS; COMPLEXES; CHEMISTRYLigandChemistryFLUOROAZOBENZENESMinistero dell'Istruzione dell'Università e della RicercaGeneral ChemistryCOCRYSTALS021001 nanoscience & nanotechnologyCondensed Matter PhysicsAcceptor0104 chemical sciencesCrystallographyAzobenzeneMIURMetal-organic frameworkCOMPLEXESSettore CHIM/07 - Fondamenti Chimici Delle TecnologieVISIBLE-LIGHTPOLYMERS0210 nano-technology
researchProduct

Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning

2015

Halogen bonding, a noncovalent interaction possessing several unique features compared to the more familiar hydrogen bonding, is emerging as a powerful tool in functional materials design. Herein, we unambiguously show that one of these characteristic features, namely high directionality, renders halogen bonding the interaction of choice when developing azobenzene-containing supramolecular polymers for light-induced surface patterning. The study is conducted by using an extensive library of azobenzene molecules that differ only in terms of the bond-donor unit. We introduce a new tetrafluorophenol-containing azobenzene photoswitch capable of forming strong hydrogen bonds, and show that an io…

RELIEF GRATINGSDENSITY-FUNCTIONAL THEORY CALCULATIONSMaterials sciencePHOTOINDUCED BIREFRINGENCE116 Chemical sciencesta221Supramolecular chemistryPhotochemistrysupramolecular chemistryDENSITY-FUNCTIONAL THEORYchemistry.chemical_compoundMaterials ChemistryMoleculeTHERMAL-ISOMERIZATIONPOLARIZATION DEPENDENCECO-CRYSTALSLIQUID-CRYSTAL ORDERta218chemistry.chemical_classificationta214Halogen bondta114PhotoswitchHydrogen bondPolymers Halogen Bonding Supramolecular Chemistry Photoresponsive AzobenzeneGeneral Chemistryhydrogen bondingPOLYMER-AZOBENZENE COMPLEXESSupramolecular polymersSOLID-STATEchemistryAzobenzeneHALOGEN BONDINGHalogenlight-induced surface patterningSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePHOTONIC APPLICATIONSPOLYMER-AZOBENZENE COMPLEXES; DENSITY-FUNCTIONAL THEORY; LIQUID-CRYSTAL ORDER; RELIEF GRATINGS; SOLID-STATE; PHOTOINDUCED BIREFRINGENCE; POLARIZATION DEPENDENCE; THERMAL-ISOMERIZATION; PHOTONIC APPLICATIONS; CO-CRYSTALSJournal of Materials Chemistry C
researchProduct